- find the GCD by factoring
- Макаров: находить общий наибольший делитель разложением на множители
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Greatest common divisor of two polynomials — Informally, the greatest common divisor (GCD) of two polynomials p ( x ) and q ( x ) is the biggest polynomial that divides evenly into both p ( x ) and q ( x ). The definition is modeled on the concept of the greatest common divisor of two… … Wikipedia
Quadratic sieve — The quadratic sieve algorithm (QS) is a modern integer factorization algorithm and, in practice, the second fastest method known (after the general number field sieve). It is still the fastest for integers under 100 decimal digits or so, and is… … Wikipedia
Lenstra elliptic curve factorization — The Lenstra elliptic curve factorization or the elliptic curve factorization method (ECM) is a fast, sub exponential running time algorithm for integer factorization which employs elliptic curves. Technically, the ECM is classified as a… … Wikipedia
List of algorithms — The following is a list of the algorithms described in Wikipedia. See also the list of data structures, list of algorithm general topics and list of terms relating to algorithms and data structures.If you intend to describe a new algorithm,… … Wikipedia
Shor's algorithm — Shor s algorithm, first introduced by mathematician Peter Shor, is a quantum algorithm for integer factorization. On a quantum computer, to factor an integer N, Shor s algorithm takes polynomial time in log{N}, specifically O((log{N})^3),… … Wikipedia
arithmetic — arithmetically, adv. n. /euh rith meuh tik/; adj. /ar ith met ik/, n. 1. the method or process of computation with figures: the most elementary branch of mathematics. 2. Also called higher arithmetic, theoretical arithmetic. the theory of… … Universalium
Quadratic residue — In number theory, an integer q is called a quadratic residue modulo n if it is congruent to a perfect square modulo n; i.e., if there exists an integer x such that: Otherwise, q is called a quadratic nonresidue modulo n. Originally an abstract… … Wikipedia
Williams' p + 1 algorithm — In computational number theory, Williams p + 1 algorithm is an integer factorization algorithm, one of the family of algebraic group factorisation algorithms. It was invented by Hugh C. Williams in 1982. It works well if the number N to be… … Wikipedia
Berlekamp's algorithm — In mathematics, particularly computational algebra, Berlekamp s algorithm is a well known method for factoring polynomials over finite fields (also known as Galois fields ). The algorithm consists mainly of matrix reduction and polynomial GCD… … Wikipedia
Pollard's p - 1 algorithm — Pollard s p − 1 algorithm is a number theoretic integer factorization algorithm, invented by John Pollard in 1974. It is a special purpose algorithm, meaning that it is only suitable for integers with specific types of factors; it is the simplest … Wikipedia
Cantor–Zassenhaus algorithm — In mathematics, particularly computational algebra, the Cantor–Zassenhaus algorithm is a well known method for factorising polynomials over finite fields (also called Galois fields).The algorithm consists mainly of exponentiation and polynomial… … Wikipedia